Here’s the info about known proofs of the above holdouts.
This subset is solved by individual proofs alone (sometimes with common techniques/lemmas). We’re confident these aren’t regular, except technically Skelet 1 (becomes a translated cycler at ludicrous scales).
This subset is solved by weighted automata, and listed (by bbchallenge text) in the cert files of MITMWFAR.
We’re confident these aren’t regular. The solution is CTL flavored, but the language class allows counting. The program can solve the 11 “shift recursive” ones by search. The 3N/helix ones, I solved by hand and translated.
This holdout, Skelet 20, is both an extreme bouncer and an extreme CPS-solvable TM.
BusyCoq certifies it as a bouncer as follows. (More info here.)
dir=L,
n0=55144,
n1=41010,
split=[(80, 80), (6, 10), (75, 70)],
shifts=[(0, 144), (2, 20), (1, 34), (1, 28), (5, 392), (1, 196), (3, 34), (13, 816), (2, 144), (2, 22), (5, 392), (2, 196), (9, 102), (13, 816), (0, 144), (0, 16), (5, 392), (1, 196), (6, 108), (13, 816), (0, 144), (0, 14), (5, 392), (1, 196), (5, 392), (2, 196), (12, 102), (13, 816), (0, 144), (0, 20), (5, 392), (1, 196), (1, 34), (2, 28), (3, 34), (13, 816), (2, 144), (0, 22), (5, 392), (2, 196), (5, 392), (1, 196), (9, 102), (13, 816), (0, 144), (0, 16), (5, 392), (0, 196), (5, 392), (1, 196), (6, 108), (13, 816), (0, 144), (0, 14), (5, 392), (3, 196), (12, 102), (13, 816), (0, 144), (0, 20), (5, 392), (2, 196), (1, 34), (0, 28), (5, 392), (1, 196), (3, 34), (13, 816), (2, 144), (0, 22), (5, 392), (2, 196), (9, 102), (13, 816), (0, 144), (0, 16), (6, 108), (13, 816), (0, 144), (0, 14), (5, 392), (1, 196), (12, 102), (13, 816), (0, 144), (2, 20), (1, 34), (1, 28), (3, 34), (13, 816), (2, 144), (0, 22), (9, 102), (13, 816), (0, 144), (0, 16), (6, 108), (13, 816), (0, 144), (0, 14), (5, 392), (2, 196), (12, 102), (13, 816)]
This subset is solved by CPS, with the given left/center/right segment sizes. (More info here.) I re-list Sk. 20.
The rest are solved by FAR. In this table I give minimal left/right DFA sizes.
Where I show ‘??’ on the right, only FAR-direct realistically gets it (using an NFA on the right). A DFA size in the 80s is possible…
Here are the DFA tables for those:
1RB0RA_1LC---_0LD0LC_0RE1RA_1RE1LD [[0, 1], [2, 0], [2, 2]], [[0, 1], [2, 1], [1, 3], [3, 3]]
1RB1LC_1LA1RB_1LD0LA_1RE0RD_---0RB [[0, 1], [2, 3], [4, 5], [4, 6], [4, 4], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 3], [4, 12], [4, 7]], [[0, 1], [2, 3], [4, 5], [6, 7], [4, 4], [0, 1], [4, 8], [9, 5], [10, 11], [4, 12], [4, 13], [4, 14], [3, 15], [6, 2], [3, 6], [4, 8]]
1RB1LA_1LA1RC_---0RD_0LA0RE_0LD1RE [[0, 1], [2, 3], [2, 2], [0, 1]], [[0, 1], [2, 3], [2, 2], [0, 1]]
1RB---_0RC0RB_1LC0LD_1RA0LE_0LA0LE [[0, 1], [2, 3], [4, 4], [5, 6], [4, 4], [7, 4], [8, 4], [9, 10], [4, 4], [5, 6], [4, 3]], [[0, 1], [2, 1], [3, 4], [5, 6], [6, 7], [6, 6], [6, 6], [8, 9], [10, 6], [10, 4], [3, 4]]
1RB1RA_1LC0LD_---1LD_1RE1LE_0RA0LB [[0, 1], [2, 3], [4, 5], [6, 0], [4, 4], [4, 7], [4, 8], [4, 2], [4, 9], [4, 6]], ??
1RB1LB_0RC0LD_1RD1RC_1LE0LA_---1LA [[0, 1], [2, 3], [4, 5], [6, 0], [4, 4], [4, 7], [4, 8], [4, 2], [4, 9], [4, 6]], ??
1RB1LA_1RC1RD_0LA0RE_---0RC_0LC1RE [[0, 1], [2, 3], [2, 2], [0, 1]], [[0, 1], [2, 3], [2, 2], [2, 1]]
1RB1RA_1LC0LC_0LE0RD_0RA1LB_1LD--- [[0, 1], [2, 3], [4, 5], [5, 5], [6, 7], [5, 5], [5, 5], [8, 9], [5, 5], [10, 4], [4, 5]], [[0, 1], [2, 1], [3, 4], [5, 6], [5, 7], [5, 5], [5, 7], [8, 9], [3, 5], [10, 6], [5, 4]]
1RB---_0RC0RB_0LD1LA_1LD1LE_0LA0LE [[0, 1], [2, 1], [1, 3], [3, 3]], [[0, 1], [2, 0], [2, 2]]
1RB0RD_1RC---_1LD1LE_1RE1LD_1RA0LC [[0, 1], [2, 3], [4, 5], [2, 3], [6, 7], [8, 8], [9, 6], [9, 6], [4, 10], [9, 9], [8, 8]], [[0, 1], [2, 1], [3, 4], [5, 6], [7, 2], [5, 5], [5, 5], [3, 8], [7, 2]]
1RB0RA_1LC---_0LD0LC_0RE1RA_1RE0RA [[0, 1], [2, 0], [2, 2]], [[0, 1], [2, 1], [1, 3], [3, 3]]
1RB---_0LC1RD_1LD1LC_1RE0RE_0RA0LB [[0, 1], [2, 3], [4, 5], [2, 3], [6, 7], [6, 8], [6, 6], [6, 8], [9, 10], [4, 6], [11, 7], [6, 5]], [[0, 1], [2, 3], [4, 5], [5, 5], [6, 7], [5, 5], [5, 5], [8, 9], [5, 5], [10, 4], [4, 5]]
1RB0RB_0RC0LD_1RD---_0LE1RA_1LA1LE [[0, 1], [2, 1], [3, 4], [5, 6], [5, 7], [5, 5], [5, 7], [8, 9], [3, 5], [10, 6], [5, 4]], [[0, 1], [2, 3], [4, 5], [5, 6], [6, 7], [5, 5], [5, 5], [8, 9], [5, 5], [10, 4], [4, 5]]
1RB---_0RC0RB_0LD1LE_1LD0LE_1LA1RC [[0, 1], [2, 1], [1, 3], [3, 3]], [[0, 1], [1, 2], [3, 1], [3, 3]]
1RB1RC_1LC1RB_1LD0RA_1LE0LB_1LA--- [[0, 1], [2, 1], [3, 4], [5, 6], [7, 2], [5, 5], [5, 5], [3, 8], [7, 2]], [[0, 1], [2, 3], [4, 5], [2, 3], [4, 4], [4, 6], [7, 8], [4, 9], [6, 6], [4, 10], [4, 10]]
1RB1LD_1LC---_0LD0LC_0RE1RA_1RE0RA [[0, 1], [2, 0], [2, 2]], [[0, 1], [2, 1], [1, 3], [3, 3]]
1RB1LA_1RC0LE_1RD0RA_1RE---_1LA1LB [[0, 1], [2, 3], [4, 5], [2, 3], [4, 4], [4, 6], [7, 8], [4, 9], [6, 6], [4, 10], [4, 10]], [[0, 1], [2, 1], [3, 4], [5, 6], [7, 2], [5, 5], [5, 5], [3, 8], [7, 2]]
1RB---_0RC0RB_0LD1LE_1LD0LE_1LA0LE [[0, 1], [2, 1], [1, 3], [3, 3]], [[0, 1], [1, 2], [3, 1], [3, 3]]
1RB0LE_1RC---_0RD0RC_1LD0LA_0LB0LE [[0, 1], [2, 3], [4, 4], [5, 6], [4, 4], [7, 4], [2, 4], [8, 9], [5, 6], [4, 3]], [[0, 1], [2, 1], [3, 4], [5, 6], [6, 7], [6, 6], [6, 6], [8, 9], [10, 6], [10, 4], [3, 4]]
1RB0RA_1LC---_0LC0LD_1RE0RB_0RE1RA [[0, 1], [2, 3], [1, 0], [3, 3]], [[0, 1], [2, 1], [1, 3], [3, 3]]
1RB---_1LC1LD_1RD1LC_1RE0LB_1RA0RC [[0, 1], [2, 3], [4, 5], [2, 3], [6, 4], [6, 7], [6, 6], [8, 9], [6, 10], [7, 7], [6, 4]], [[0, 1], [2, 1], [3, 4], [5, 6], [7, 2], [5, 5], [5, 5], [3, 8], [7, 2]]
1RB---_0RC0RB_0LD1LE_1LD1RC_1LA0LE [[0, 1], [2, 1], [1, 3], [3, 3]], [[0, 1], [1, 2], [3, 1], [3, 3]]
1RB0LD_1RC0RE_1RD---_1LE1LA_1RA1LE [[0, 1], [2, 3], [4, 5], [2, 3], [4, 4], [4, 6], [7, 8], [4, 9], [6, 6], [4, 10], [4, 10]], [[0, 1], [2, 1], [3, 4], [5, 6], [7, 2], [5, 5], [5, 5], [3, 8], [7, 2]]